The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features
نویسندگان
چکیده
We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The relative spatial distribution of steep slopes can be reliably obtained, although some technical characteristics of the LOLA dataset preclude statistical studies of slope orientation. The derived slope-frequency distribution revealed a steep rollover for slopes close to the angle of repose. Slopes significantly steeper than the angle of repose are almost absent on the Moon due to (1) the general absence of cohesion/strength of the fractured and fragmented megaregolith of the lunar highlands, and (2) the absence of geological processes producing steep-slopes in the recent geological past. The majority of slopes steeper than 32 °–35 ° are associated with relatively young large impact craters. We demonstrate that these impact craters progressively lose their steepest slopes. We also found that features of Early Imbrian and older ages have almost no slopes steeper than 35 °. We interpret this to be due to removal of all steep slopes by the latest basin-forming impact (Orientale), probably by global seismic shaking. The global spatial distribution of the steepest slopes correlates moderately well with the predicted spatial distribution of impact rate; however, a significant paucity of steep slopes in the southern farside remains
منابع مشابه
Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units
We present maps of the topographic roughness of the Moon at hectometer and kilometer scales. The maps are derived from range profiles obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. As roughness measures, we used the interquartile range of profile curvature at several baselines, from 115 m to 1.8 km, and plotted these in...
متن کاملLunar Observer Iaser Altimeter Observations for Lunar Base .- Site Selection
One of the oqtical datasets for optimal selection of future lunar lana_ng sites is local, to regional-scale topography. Lunar base site selection will require such data for hoth engineering and scientific olX,rations purposes. The Lunar Geosctence Orbiter or Lunar Obsert_or is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser alt...
متن کاملThickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi‐ring basin formation
[1] Quantifying the ejecta distribution around large lunar basins is important to understanding the origin of basin rings, the volume of the transient cavity, the depth of sampling, and the nature of the basin formation processes. We have used newly obtained altimetry data of the Moon from the Lunar Orbiter Laser Altimeter (LOLA) instrument to estimate the thickness of ejecta in the region surr...
متن کاملLow-amplitude topographic features and textures on the Moon: Initial results from detrended Lunar Orbiter Laser Altimeter (LOLA) topography
Global lunar topographic data derived from ranging measurements by the Lunar Oribter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a...
متن کاملLunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data
[1] Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the s...
متن کامل